TECHNICAL INFORMATION

Low Voids Hi-performance NO-CLEAN SOLDER PASTE

SE58 – M955LV SS58 – M955LV SSA58 – M955LV

1.	FEATURES	Page 2
2.	SPECIFICATIONS	2
3.	TEMP VISCOSITY CURVE	3
4.	VISCOSITY VARIATION	4
5.	TACKINESS	5
6.	SLUMP	6
7.	SOLDER BALL	8
8.	VOIDING	10
9.	COPPER PLATE CORROSION	12
10.	SURFACE INSULATION RESISTANCE	13
11.	VOLTAGE APPLIED SIR	14
12.	USE OF KOKI SOLDER PASTE	15

KOKI COMPANY LIMITED

Product Name: SE, SS, SA58-M955LV

1. FEATURES

- 1) Employment of rigidly classified 20~38 micron solder powder ensures outstanding continual printing with fine pitch (0.5mm/20mil) and even super fine pitch (0.4mm/16mil) application and long stencil idle time.
- 2) Carefully selected flux chemistry ensures low voids formation.
- 3) Extremely long stencil idle time and tack time offers a wide process window.
- 4) Low colour flux residue offers superior cosmetic appearance.
- 5) Conforms to Bellcore tests (Copper Mirror, Halides, Surface Insulation Resistance, Electromigration) GR-78-CORE, Issue 1.

.

2. SPECIFICATIONS

1) Alloy

	Item	Unit	SE58-M955LV	SS58-M955LV	SSA58-M955LV	Remarks
C	omposition	%	Sn63, Pb37	Sn62, Pb36, Ag2	Sn62.6, Pb36.8, Ag0.4, Sb0.2	JIS E grade
	Shape	1	Spherical			Microscope×50
Pa	article size	μm				

2) Flux

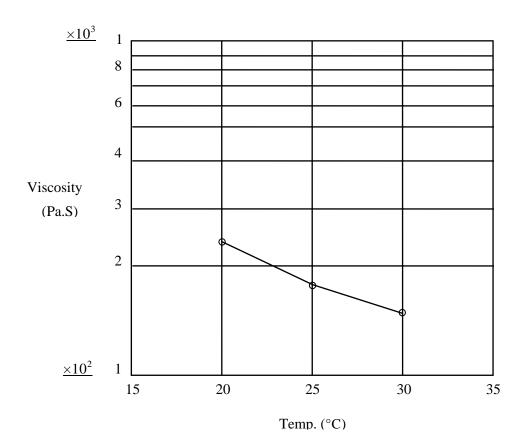
Hai	Halogen content		Halogen content %		0.0	Potentiometer
cm*1	SIR*1 Initial value After humidification		$> 1 \times 10^{12}$	JIS comb type		
SIR				> 1 × 10 ¹¹	electrode type I	
Aqueous solution resistivity*2		Ωcm	$> 5 \times 10^4$	Conductivity		
Flux type		_	ROL0	ANSI/J-STD-004		

3) Solder paste

Flux content	%	9.3	By weight
Viscosity*3	Pa.S	190 ± 20	Malcom PCU-205
Copper plate corrosion*4		Passed	
Solder spread factor	%	> 90	Copper plate
Tack time	hour	> 24	Malcom FG-1
Shelf life	month	6	Below 10°C

- 1. SIR40°C×90%RH×96Hr
- 2. Aqueous solution resistivity......In accordance with MIL specifications.
- 4. Copper plate corrosion In accordance with JIS

First issue : Apr. 14, 2003 Revised : May 22, 2007 Product Name : SE, SS, SA58-M955LV


TEMPERATURE - VISCOSITY CURVE

• Test method

Equipment : Malcom viscometer PCU-205

Rotation of spindle : 10 r.p.m. Measuring time : 5 min,

Measuring temp. (°C)	Viscosity (Pa.S)
20	230
25	186
30	160

Product Name: SE, SS, SA58-M955LV

4. Viscosity Variation in Continual Print

· Test method

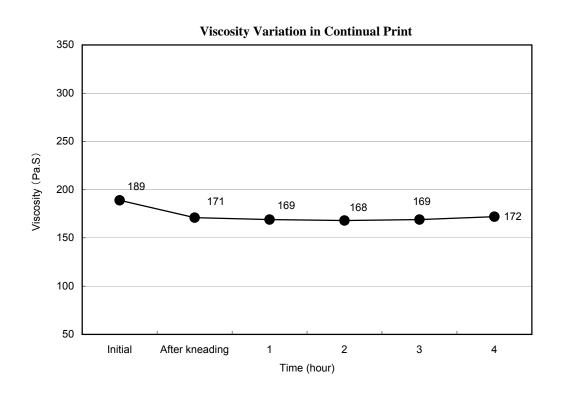
Print (knead) solder paste on the sealed-up stencil continuously for 4 hours to observe the viscosity variation.

Stencil : 0.15mm thickness, laser cut stencil
Printer : Model MK-880SV Minami Kogaku

Squeegee : Metal blade

Angle - 60°

Speed - 30 mm/sec


Print stroke : 300mm

Atmosphere : $23.5 \sim 25.0$ °C ($50 \sim 60$ % RH)

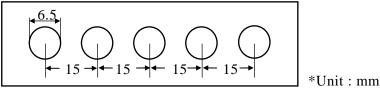
Measurement of viscosity: Before printing, at 1, 2, 3 and 4 hours by Malcom viscometer PCU-205

• Result

Time (hour)	Initial	After kneading	1	2	3	4
Viscosity (Pa.S)	189	171	169	167	169	172

Product Name: SE, SS, SA58-M955LV

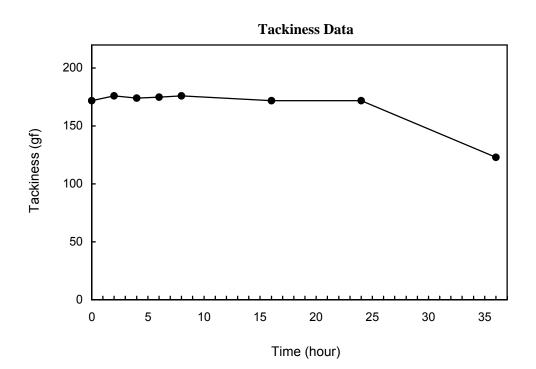
5. TACKINESS


· Test method

Print the solder paste on an alumina plate with a 0.2mm thick stencil that has five 6.5mm dia. holes, to obtain the test piece.

Press the flat tip cylindrical probe of a Malcom Solder Checker FG-1 onto the printed solder paste with a pressure of 50gs for 0.2mm sec. and pull it back up at a speed of 10mm/sec., in order to measure the maximum tensile strength needed to separate the probe from the paste.

Evaluate the tackiness of the solder paste from the obtained tack force and time after printing.

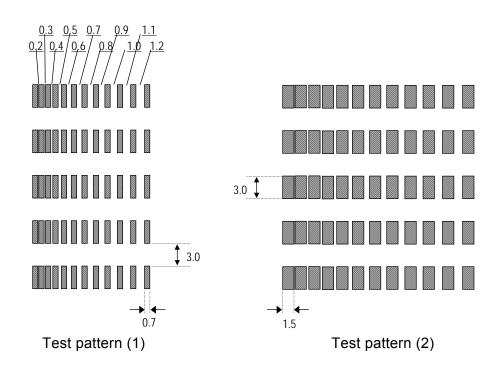

*Ambient condition: 25°C 50±10%RH

Stencil used

	Time (hour)							
Product	0	2	4	6	8	16	24	36
Tackiness (gf)	172	176	174	175	176	172	172	101

*Unit : (gf) Average of n = 5

5

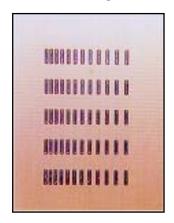

Product Name: SE, SS, SA58-M955LV

6. SLUMP

• Test method

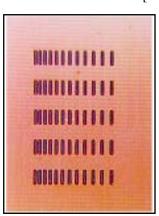
Using 0.2mm thick stainless steel stencil with two patterns of apertures, (1)3.0mm×0.7mm, (2)3.0mm×1.5mm arranged as grids with the spacing between the apertures varying from 0.2mm to 1.2mm in steps of 0.1mm, print the solder paste on 1.6mm thick copper clad laminate plate to obtain test pieces.

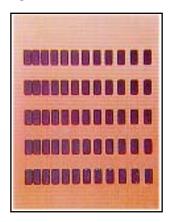
- (1) Observe the slump behavior after leaving the test pieces at room temperature for 1 hour.
- (2) Observe the minimum spacing across which the paste has not merged after storing the test pieces at room temperature for 1 hour, and heating it for 5 minutes at 150°C in the thermostatic oven.

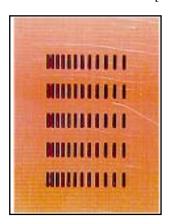

n	Stored at room temperature for 1 hour						
n	Room temp.	100°C×20min.	150°C×5min.				
(1)	0.2	0.3	0.3				
(2)	0.2	0.3	0.3				

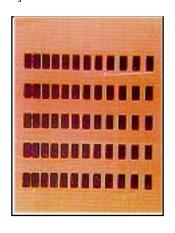
First issue: Apr. 14, 2003

Revised: May 22, 2007 Product Name: SE, SS, SA58-M955LV


*Store at room temperature for 1 hour (Product: SS58-M955LV)

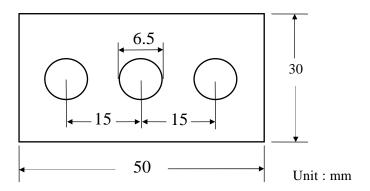

[Room temperature (no heating)]




[$100^{\circ}\text{C} \times 20\text{min.}$]

[150°C ×5min.]

Product Name: SE, SS, SA58-M955LV


7. SOLDER BALL

• Test method

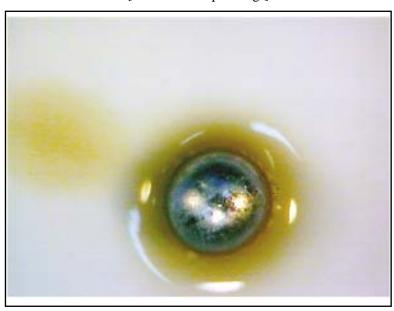
Prepare two test pieces by printing the paste on each alumina plate $(50\times50\times0.8\text{tmm})$ with a 0.2mm thick stencil provided with three 6.5mm diameter apertures with a distance between centers of 15mm.

Reflow one of them in 1 hour after printing and the other after storing it at 25±2°C 60±20%RH for 24 hours, on a hot plate at 250°C. Remove the test pieces from the hot plate after 5 seconds since the solder paste melted completely and cool them down to room temperature.

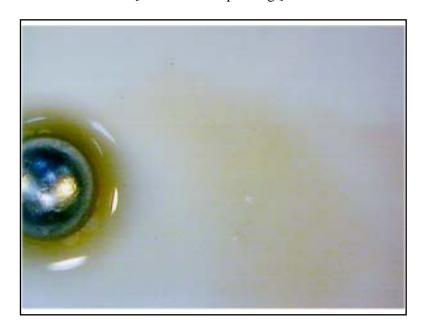
Inspect the degree of reflowing referring to 'Solder balling evaluation standard' using the $\times 10$ magnifying glass.

Stencil used.

• Solder balling evaluation standard


Category	Status of coalescence of solder	Illustration (ex.)
1	The molten solder from the paste has melted in to one solder ball.	
2	The molten solder from the paste has melted into one large solder ball with no more than three isolated small solder balls with diameter less than 75 µm.	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
3	The molten solder from the paste has melted into one large solder ball surrounded by more than three solder balls with diameters less than 75µm which do not form a semi-continuous halo.	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
4	The molten solder from the paste has melted into one ball accompanied by a large number of smaller solder balls which may form a semi-continuous halo, or has melted to form a number of similarly sized balls.	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

First issue : Apr. 14, 2003 Revised : May 22, 2007 Product Name : SE, SS, SA58-M955LV


• Test result (Product : SS58-M955LV) :

Test piece	1 hour after print	24 hours after print
a	Category 2	Category 3
b	3	3
С	3	3

[1 hour after printing]

[24 hour after printing]

Product Name: SE, SS, SA58-M955LV

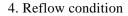
8. VOIDING

• Test method

1. Test board

 $\begin{array}{lll} \mbox{Model:} & \mbox{SPRTP-003} \\ \mbox{Material:} & \mbox{Glass epoxy FR-4} \\ \mbox{Dimension:} & 105{\times}135{\times}1.6tmm \\ \mbox{Surface treatment:} & \mbox{Bare copper} \end{array}$

2. Print condition

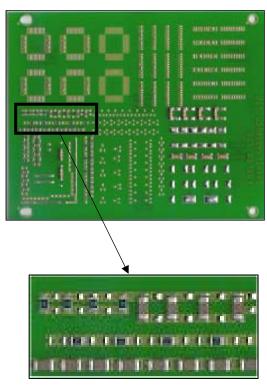

Stencil thickness: 0.2 mm (laser cut)

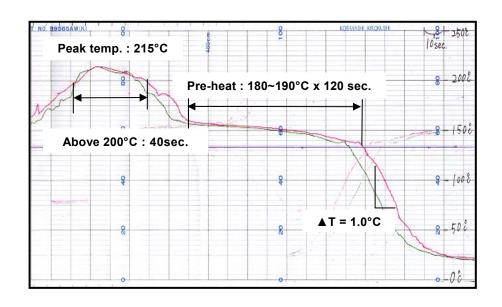
Printer: Model MK-880SV (Minami Kogaku)

Stencil aperture: 100% aperture opening to pad

3. Components

3216 condenser: 27 pcs./board *Sn plated 2125 resister: 18 pcs./board *Sn plated




Reflow oven: Koki Model: APSR-257

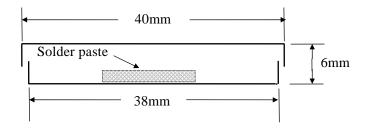
Heat source : Far infrared + Hot air convection Zone structure : 3 pre-heat zones + 1 reflow zone

Atmosphere: Air

Temperature profile:

First issue : Apr. 14, 2003 Revised : May 22, 2007 Product Name : SE, SS, SA58-M955LV

• Test result (Product : SS58-M955LV)


Compoi	nent	SS58-M955LV	Conventional product
	1		
resister	2		
2125 Chip resister	3		
	4		
condenser	1		
2125 Chip condenser	2		

Product Name: SE, SS, SA58-M955LV

9. COPPER PLATE CORROSION

· Test method

Prepare 6 pcs. of phosphorus deoxidized copper plate of $50\times50\times0.5$ tmm in size (JIS-H-3100). Bend 3 of them at right angle at 5mm (copper plate A), and the rest at 6mm (copper plate B) from the both edges to form three open ended boxes.

After removing any grease from both copper plate A and B with acetone, soak them in 5% sulfuric acid for 1 minute and in ammonium persulfate solution (solution which contains 25% of ammonium persulfate in 0.5% of sulfuric acid) in 1 minute to etch the surface uniformly. After washing them with running water, soak in 5% sulfuric acid for 1 minute and rinse thoroughly with running tap water and demineralised water. Then finally, rinse them with acetone and dry.

Obtain test pieces by printing solder paste on the copper plate B with a 0.2mm thick stencil provided with 6.5mm diameter aperture.

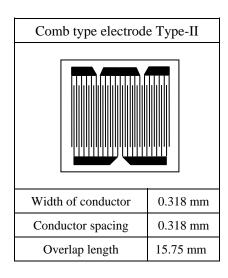
Place all three copper plates A over the copper plates B and lower each box in a horizontal position on to the surface of the solder bath at the temperature of 235±2°C and maintain the test pieces in this position for 5 seconds.

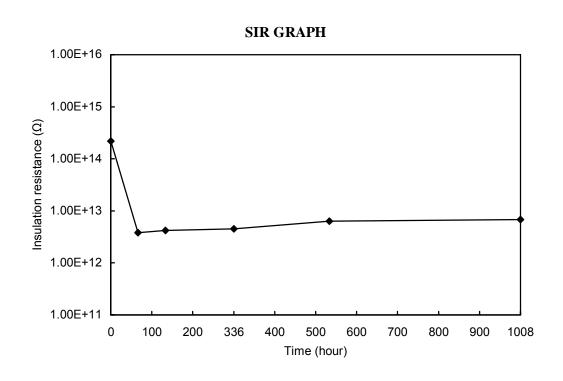
Remove each test piece from the solder bath and allow it to cool in a horizontal position down to room temperature. Place all three boxes in the thermohygrostat under the condition of $40\pm2^{\circ}$ C, $90\sim95\%$ RH for 72 hours.

Remove the boxes from the thermohygrostat and inspect the inside surfaces of the boxes (including the lid) for possible corrosion.

n	Copper plate A	Copper plate B
1	No corrosion	No corrosion
2	No corrosion	No corrosion
3	No corrosion	No corrosion

First issue: Apr. 14, 2003 Revised: May 22, 2007 Product Name: SE, SS, SA58-M955LV


10. SURFACE INSULATION RESISTANCE


• Print the solder paste with a 0.1mm thick stencil on a comb type electrode type-II specified in JIS-Z-3197: 1999 8.5.4 and reflow to obtain the test piece.

Put the test piece in a thermohygrostat under the conditions of 85±2°C and 85±2%RH.

Measure the insulation resistance at every specific time taking the test pieces out of the thermohygrostat. DC100V for the measurement.

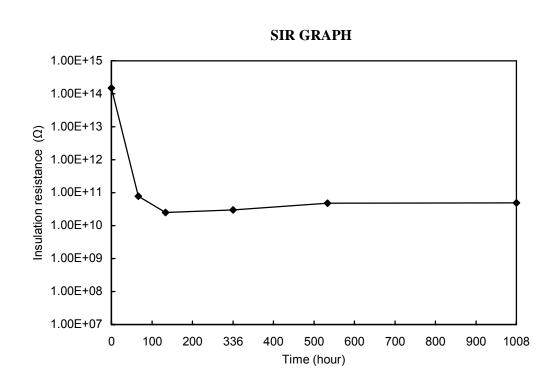
Time (hour)	S.I.R. Value (Ω)
Initial value	2.2×10^{14}
96	3.8×10^{12}
168	4.2×10^{12}
336	4.5×10^{12}
504	7.3×10^{12}
1008	6.8×10^{12}

Product Name: SE, SS, SA58-M955LV

11. VOLTAGE APPLIED SIR

(Electromigration Test)

• Test method


Print the solder paste with a 0.1mm thick stencil on a comb type electrode Type-II specified in JIS-Z-3197: 1999 8.5.4 and reflow to obtain test pieces.

Put the test pieces in a thermogygrostat under the conditions of 85±2°C and 85±2%RH.

Measure the insulation resistance at every specific time keeping the test pieces in the thermohygrostat and apply DC50V. Apply 100V for the measurement.

Time (hour)	Place measured	Average (Ω)
Initial value	Out thermohygrostat	1.5×10^{14}
96	In thermohygrostat	7.8×10^{10}
168	In thermohygrostat	2.5×10^{10}
336	In thermohygrostat	3.0×10^{10}
504	In thermohygrostat	4.8×10^{10}
1008	In thermohygrostat	4.9×10^{10}

[♦] There was no evidence of electromigration.

Product Name: SE, SS, SA58-M955LV

12. USE OF KOKI SOLDER PASTE

In order to make the paste use of KOKI SOLDER PASTE, please refer to the following guideline carefully before use.

1. Preparation for printing

1) Temperature

After taking the solder paste from the refrigerator, in which the temperature is controlled to between 5 - 10°C, allow the paste temperature to return to ambient.

*Caution: Do not open the jar while it is cold, as it causes condensation moisture on the paste, and could be the cause of poor performance, such as an increase in viscosity, solder balling

Do not under any circumstances heat the paste prior to use.

2) Stirring

By using a stainless steel or chemically resistive plastic spatula, fold the paste before use.

It is recommended to fold it for at least 1~2 min. to obtain a uniform and stable viscosity.

*Caution: When automatic stirring equipment is used, do not stir the paste for longer than 4 min.

2. Printing

1) Recommended printing parameters

(1) Squeegee

1. Kind : Flat

2. Material : Rubber or metal blade

3. Angle : $60\sim70^{\circ}$ (rubber) or metal blade

4. Pressure : Lowest.

5. Squeegee speed: 10~100mm/sec.

(2) Stencil

1. Thickness : 200~120μm for 0.65~0.4mm pitch pattern

2. Snap-off distance: 0~0.5mm

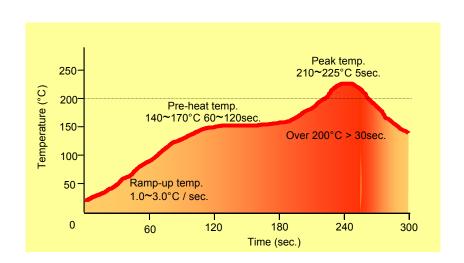
- *Although on-contact (0mm snap-off) is normally recommended for fine pitch printing, if the printing equipment is not provided with a stencil separation speed control system, proper snap-off distance is necessary to ensure smooth and gradual separation of the stencil from the substrate to ensure good solder paste deposits.
- 3. Fixing method of substrate: It is recommended to have a fixture or vacuum system to hold the substrate in position during printing to prevent movement of the PC board and to have a good separation from the stencil.
- 4. It is strongly recommended to set the stencil separation speed as slow as possible.

(3) Ambient

1. Temperature : $25 \pm 5^{\circ}$ C 2. Humidity : $40\sim60\%$ RH

3. Climate control : Air flow seriously affects stencil life and tack performance of solder pastes.

*Caution: When local air conditioner is equipped, make sure it is not enhancing the drying out of the solder paste.


Product Name: SE, SS, SA58-M955LV

(4) Printing

1. Initial quantity of solder paste to put on the stencil shall be decided according to the size of the stencil, blade or squeegee and the PC board.

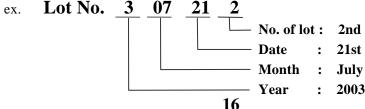
- 2. Add paste to replenish only the consumed amount.
 - *Minimize the amount of paste left on the stencil as degradation is accelerated once it is processed on the stencil.
- 3. After a certain number of continuous prints, thoroughly clean the bottom side or both the top and bottom side of the stencil the number of prints will vary depending on individual set-ups.
- 4. Clean both the top and bottom side of the stencil before every break.
- 5. Do not return the used paste into the original jar in order to prevent mixture and contamination of the fresh paste, but put it in a separate container for re-use, if necessary.

3. Reflowing

4. Storage

Storage upon receipt by customer – label information on product also relates to storage conditions of product upon receipt by customer

Store in a refrigerator at 0 - 10°C.


DO NOT FREEZE!

*** Data available upon request regarding stability of product during transportation ***

5. Shelf life

1) 0 ~ 10°C
2) At 20°C
3) At 30°C
4 month from manufacturing date
5 month from manufacturing date
6 months from manufacturing date
1 month from manufacturing date
* Manufacturing date can be obtained from the lot number

ov Lot No. 3 07 21 2

^{*}In order to ensure good rolling of the paste across the stencil and easy separation from squeegees, a certain amount of solder paste is required throughout the printing process.